Beyond Traditional Models of Theory of Mind in Normal Aging: The Modifying Influence of Blood Pressure

Ashley L. Fischer¹, Wendy J.L. Thornton¹, & D.M. Bernstein²

¹Department of Psychology, Simon Fraser University, Burnaby, B.C., Canada
²Department of Psychology, Kwantlen Polytechnic University, Surrey, B.C., Canada

Theory of Mind (ToM)
- Ability to understand and reason about one’s own or others’ mental states.
 - Reliable age reductions in ToM [1,2].
- Underlying neurocognitive resources support ToM:
 - Memory, executive functions, & speed.
 - Cannot fully account for ToM performance [1].
- Can age-associated health modifiers account for weaker ToM abilities in late life?

Blood Pressure (BP) & Cognitive Aging
- BP = important marker of vascular aging. Associated with:
 - Cardiovascular morbidity and mortality.
 - Earlier/accelerated cognitive decline [3].
- Predicts and modifies performance:
 - Learning & memory, attention, executive function, speed [3].
- Not previously studied in the context of ToM.
- Three common indicators. Differential associations with age:
 - SBP
 - DBP
 - PP

STUDY OBJECTIVES

1. Does BP independently predict older adults’ ToM, beyond age and neurocognitive performance?
2. Does BP interact with neurocognitive performance to predict older adults’ ToM ability?

Participants
- N = 66 community-living older adults (59% female).
 Inclusion: English fluency; adequate vision & hearing; education ≥ grade 6.
 Exclusion: MMSE ≤ 24; significant head injury; psychotic illness; concurrent illness affecting cognition.

Results
- Hierarchical regression analyses, correcting for type 1 error.

(1) SBP uniquely predicted ToM, controlling for age & NP.

Table 1. Demographic characteristics and sample composition. Age & education presented in years.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Domain</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVLT - Long Delay</td>
<td>Verbal Memory</td>
<td></td>
</tr>
<tr>
<td>WAIS-III Letter-Number Sequencing</td>
<td>Working Memory</td>
<td></td>
</tr>
<tr>
<td>WAIS-III Coding</td>
<td>Processing Speed</td>
<td></td>
</tr>
<tr>
<td>D-KEFS Trail Making C</td>
<td>Cognitive Flexibility</td>
<td></td>
</tr>
<tr>
<td>D-KEFS Color-word Interference</td>
<td>Inhibitory Control</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure</th>
<th>Domain</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Systolic BP = SBP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diastolic BP = DBP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse Pressure = PP (SBP - DBP)</td>
<td></td>
</tr>
</tbody>
</table>

Measure Neurocognitive
- Domains implicated in existing ToM models.
 - PCA: 1-factor Neurocognitive Performance (NP).
 - Comprised 5 tasks (56% variance):
 - ToM associations with associated health predictors.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Domain</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Systolic BP = SBP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diastolic BP = DBP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulse Pressure = PP (SBP - DBP)</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

BP (esp. PP) important and previously unrecognized modifier of ToM-cognition associations.
- Especially in older adults with BP.
- Cognitive aging alone cannot fully explain age reductions in ToM ability [see also 1].
- Future models of ToM in aging should incorporate age-associated health predictors.

Select References

Acknowledgements
Research supported by Social Sciences and Humanities Research Council (SSHRC) Standard Research Grants to W.L. Thornton and D.M. Bernstein. A.L. Fischer is supported by a SSHRC Canada Graduate Doctoral Scholarship.

W.J.L. Thornton and D.M. Bernstein. A.L. Fischer is supported by a SSHRC Canada Graduate Doctoral Scholarship.

Figure 1. Moderation effect of high PP in relation to ToM. Low-normal PP group: n = 44, PP range = 31-59. High PP group: n = 22, PP range = 60-96.